Navigating the complexities of student understanding: Exploring the coherency of students' conceptions about the greenhouse effect

Author:

Schubatzky Thomas1ORCID,Haagen‐Schützenhöfer Claudia2,Wackermann Rainer3,Wöhlke Carina3,Wildbichler Sarah1

Affiliation:

1. Department of Subject‐Specific Education and Institute for Experimental Physics University of Innsbruck Innsbruck Austria

2. Department of Physics Education Research, Institute of Physics University of Graz Graz Austria

3. Physics Education Research Group Ruhr‐University Bochum Bochum Germany

Abstract

AbstractThe greenhouse effect is a complex scientific phenomenon that plays a crucial role in understanding climate change. Grasping students' understanding of this phenomenon on the content‐specific level but also how students' conceptions are organized is vital for effective climate change education. This study addresses both levels and delves into the relationship between students' frameworks and knowledge pieces of the greenhouse effect through the analysis of multiple‐choice questions, employing Bayesian correlations and multiple logistic regression. We thereby focus on specific types of conceptualizations of the greenhouse effect that have been identified in previous research and furthermore investigate the coherency of them. To do so, we analyzed answers of N = 604 grade 11 students in Austria and Germany and interpreted them from different theoretical perspectives. The findings showed that students hold various ideas about the greenhouse effect that are only seldom coherent, in particular when it comes to adequate ideas about the greenhouse effect. However, especially for a reflection‐based framework of the greenhouse effect, our results demonstrate that students' conceptions show some form of coherency. We argue that our results can inform the development of effective teaching strategies that address students' existing knowledge and alternative conceptions. In terms of practical implications, the findings suggest that teaching strategies should provide opportunities for students to integrate their knowledge pieces into a more coherent understanding of the greenhouse effect. The study highlights the need for further investigation into the relationship between knowledge pieces and frameworks not only for the greenhouse effect, but for science education in general.

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3