A generalizable approach based on the U‐Net model for automatic intraretinal cyst segmentation in SD‐OCT images

Author:

Ganjee Razieh1ORCID,Ebrahimi Moghaddam Mohsen1ORCID,Nourinia Ramin2

Affiliation:

1. The Faculty of Computer Science and Engineering Shahid Beheshti University G.C Tehran Iran

2. Ophthalmic research center Shahid Beheshti University of Medical Sciences Tehran Iran

Abstract

AbstractIn this article, we propose a new U‐Net‐based approach for intraretinal cyst segmentation across different vendors that improve some of the challenges faced by previous deep‐based techniques. The proposed method has two main steps: (1) prior information embedding and input data adjustment, (2) the segmentation model. In the first step, we inject the information into the network in a way that overcomes some of the network limitations in receiving data and learning important contextual knowledge. And in the next step, we introduce a connection module between the encoder and decoder parts that transfers information more effectively from the encoder to the decoder. Two public datasets, namely, OPTIMA and KERMANY, are employed to evaluate the proposed method. The results show that the proposed method is an efficient vendor‐independent approach for the segmentation of intraretinal cystoid fluid with mean Dice values of 0.78 and 0.81 on the OPTIMA and KERMANY datasets, respectively.

Publisher

Wiley

Subject

Electrical and Electronic Engineering,Computer Vision and Pattern Recognition,Software,Electronic, Optical and Magnetic Materials

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3