Can small stream solute–land cover relationships predict river solute concentrations?

Author:

Webster Jackson R.1ORCID,Jackson C. Rhett2,Knoepp Jennifer D.3,Bolstad Paul V.4

Affiliation:

1. Department of Biological Sciences Virginia Polytechnic Institute and State University Blacksburg Virginia USA

2. Warnell School of Forestry and Natural Resources, University of Georgia Athens Georgia USA

3. USDA Forest Service, Southern Research Station, Coweeta Hydrologic Lab Otto North Carolina USA

4. Forest Resources Department University of Minnesota St. Paul Minnesota USA

Abstract

AbstractMost studies of land use effects on solute concentrations in streams have focused on smaller streams with watersheds dominated by a single land‐use type. Using land cover as a proxy for land use, the objective of this study was to determine whether the hydrologically‐driven response of solutes to land use in small streams could be scaled up to predict concentrations in larger receiving streams and rivers in the rural area of the Little Tennessee River basin. We measured concentrations of typically limiting nutrients (nitrogen, phosphorus), abundant anions (chloride, sulfate), and base cations in 17 small streams and four larger river sites. In the small streams, total solute concentration was strongly related to land cover ‐‐ highest in streams with developed watersheds, lowest in streams with forested watersheds, and streams with agricultural watersheds were in between. In general, the best predictor of solute concentrations in the small streams was forest land cover. We then predicted solute concentrations for the river sites based on the solute‐‐land cover relationships of the small streams using multiple linear regressions. Results were mixed ‐‐ some of the predicted river concentrations were close to measured values, others were greater or less than measured concentrations. In general, river concentrations did not scale with land cover‐solute relationships found in small tributaries. Measured values of nitrogen solutes in the river sites were greater than predicted, perhaps due to the presence of waste water treatment plants. We attributed other differences between measured and predicted river concentrations to the heterogeneous geochemistry of this mountainous region. The combined complexity of hydrology, geochemistry, and human land‐use of this mountainous region make it difficult to scale up from small streams to larger river basins.

Funder

National Science Foundation

Publisher

Wiley

Subject

Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3