CDTC: Automatically establishing the trace links between class diagrams in design phase and source code

Author:

Chen Fangwei1ORCID,Zhang Li1,Lian Xiaoli1

Affiliation:

1. School of Computer Science and Engineering Beihang University Beijing China

Abstract

AbstractContextThe UML class diagram is commonly used to model functional structures and software code structures in both the preliminary and detailed design stages. And the abstraction level of UML class diagrams is usually higher than that of source code. Usually, there is a lack of trace links between these class diagrams and the source code, which may cause difficulties in understanding the source code, and affect the software evolution and maintenance.ObjectiveThe main goal of this article is to establish the trace links between highly abstracted UML class diagrams in the design phase and source code, and eventually help practitioners better understand source code.MethodWe propose an approach for the automated trace link establishment between UML class diagrams in the design phase and source code. To address the problem of abstraction level gap between them, we extend the UML class diagram by mining the synonymous phrases of class names and deducing the latent missing relationships between classes from multiple design documents. Then we build the trace links with a two‐phase approach including initial construction with fuzzy matching and further optimization by class relationship inference.ResultsExperiments on five open‐source projects show that the recalls of our approach are over 94%, and the F2‐scores are over 88%, with the gains of 30% to 60% than the four baselines.ConclusionOur work can be a reference for establishing the initial trace links between highly‐abstracted UML class diagrams and source code. Towards the higher abstraction of design diagrams, we extend UML class diagrams with the statistical analysis on multiple design documents. To guarantee the quality of trace links, we design a two‐phase approach by obtaining the “full but not good enough” trace links and filtering the “probably wrong” links. Experiments show that the main techniques of our approach behave as important role for tracing between high‐level class diagrams and source code.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3