A novel energy storage and demand side management for entire green smart grid system forNEOMcity in Saudi Arabia

Author:

Eltamaly Ali M.1ORCID

Affiliation:

1. Sustainable Energy Technologies Center King Saud University Riyadh Saudi Arabia

Abstract

AbstractHybrid renewable energy systems (HRES) are gaining high interest in supplying electric energy for remote communities. Energy storage systems (ESS) are utilized by green autonomous HRESs to accommodate the variability of renewable resources such as wind and solar energy systems. The lack of any traditional energy source is adding a great reliability challenge which should be compensated using expensive ESS. This challenge can be avoided by using a pumped hydro energy storage system (PHES) in harmony with batteries. The PHES is an excellent option to be used in NEOM city due to the perfect topographical characteristic of this site. The minimum cost of energy and the highest reliability is used as an objective for sizing the proposed entire green HRES. Using smart grid principles (SGP) and demand‐side management (DSM) in the design and operation stages will minimize system size and cost, which can result in a significant reduction in consumer bills. As a result, this paper introduces an innovative DSM based on a dynamic tariff. The suggested DSM technique was developed utilizing a unique fuzzy logic that takes into account the present and day‐ahead ESS situations to intelligently determine the ideal tariff for the lowest cost and maximum reliability of the HRES. This paper introduces a modified grey wolf optimization (MGWO) technique to shorten convergence time while preserving the best accuracy. The suggested MGWO is assessed against 10 swarm optimization techniques. The payback period of the project is 7 years. The findings acquired from this unique program demonstrated its superiority, with conversion times reduced by 22% to 80% when compared to previous optimization procedures. Furthermore, as compared to the flat rate pricing tariff, the usage of the dynamic tariff lowered the LCOE by 53%.

Publisher

Wiley

Subject

Renewable Energy, Sustainability and the Environment,Energy Engineering and Power Technology

Reference68 articles.

1. Status and perspectives on 100% renewable energy systems;Hansen K;Energy,2019

2. B. Petroleum.Statistical review of world energy.https://www.bp.com/en/global/corporate/energy‐economics/statistical‐review‐of‐world‐energy.html

3. Integration and energy management of a hybrid Li‐VRB battery for renewable applications;Fathima AH;Renew Energy Focus,2019

4. Distributed energy management for community microgrids considering network operational constraints and building thermal dynamics;Liu G;Appl Energy,2019

5. A review on clean energy solutions for better sustainability;Dincer I;Int J Energy Res,2015

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3