Brittle failures and vein formation in the evolution of the South Qiangtang accretionary complex in the Tibetan Plateau

Author:

Li Peng‐Sheng1,Li Dian1,Hu Yi‐Ling1ORCID,Pei Qiu‐Ming2,Wang Gen‐Hou3,Zou Hao1,Liu Zheng‐Yong1,Li Yang1,Guo Jing4,He Ya‐Dong5

Affiliation:

1. College of Earth Sciences Chengdu University of Technology Chengdu China

2. Faculty of Geosciences and Environmental Engineering Southwest Jiaotong University Chengdu China

3. School of Geosciences and Resources China University of Geosciences (Beijing) Beijing China

4. The Third Geological Exploration Institute Of China Metallurgical Geology Bureau Taiyuan China

5. Jinneng Holdings Coal Industry Group Datong China

Abstract

The genesis of the subduction mélange in the central Qiangtang terrane has been a long hot debate. However, little research has been conducted on the brittle failure within the accretionary wedge, which is very important to unveil the structural evolution of the mélange. In this study, based on the recognition of multiple deformational phases, we analyse the characteristics and formation history of the vein system in the Gangma Co mélange. Six groups of quartz veins are recognized. Foliation‐parallel extension veins (G1 veins), shear veins (G2 veins) and foliation‐perpendicular extension veins (G4 veins) are supposed to have formed during the subduction of oceanic crust, recording the repeated low‐angle thrust‐sense frictional sliding, tensile fracturing and stress changes generated by subduction‐related earthquakes. Subsequent vertical extension veins (G5 veins) are suggested to be related to the exhumation of the underplated mélange, while the horizontal extension veins (G6 veins) in the last phase represent the final horizontal thrusting. The temperature conditions for shear vein formation were examined by fluid inclusion analysis, ranging from 120 to 200°C, coinciding with the temperature conditions of the slow earthquake region where episodic tremors and slow slip occur. This contribution supports that the Gangma Co mélange represents an in situ subduction zone and that its internal vein system is a response to the tectonic evolution of the Longmu Co‐Shuanghu Tethys Ocean.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Geology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3