Fractional order modeling based optimal multistage constant current charging strategy for lithium iron phosphate batteries

Author:

Rao K. Dhananjay1,Chappa Anilkumar2,Chaitanya SVNSK1,Hemachander A.3,Teja B. Phani4,Dawn Subhojit1ORCID,Prasad Miska5,Ustun Taha Selim6ORCID

Affiliation:

1. Department of Electrical & Electronics Engineering Velagapudi Ramakrishna Siddhartha Engineering College Vijayawada India

2. Department of Electrical & Electronics Engineering Sri Vasavi Engineering College Tadepalligudem India

3. Department of Electrical and Electronics Engineering National Institute of Technology Puducherry Karaikal India

4. Department of Electrical and Electronics Engineering SRM Institute of Science and Technology Chennai Kattankulathur India

5. Department of Electrical & Electronics Engineering ACE Engineering College Hyderabad India

6. Fukushima Renewable Energy Institute, AIST (FREA) Koriyama Japan

Abstract

AbstractThe primary power source for electric vehicles (EVs) is batteries. Due to the superior characteristics like higher energy density, power density, and life cycle of the lithium iron phosphate (LFP) battery is most frequently chosen among the various types of lithium‐ion batteries (LIBs). The main issues that users encounter are the time required to charge an EV battery and the safety of the EV battery during the charging period. The fast‐charging means, charging a battery with high currents which may lead to a rise in the temperature of a battery. The abrupt rise in battery temperature may cause changes in the internal chemical structures of the battery, reducing battery life even further. In this regard, an optimal charging profile design is of utmost importance in order to satisfy dual objectives simultaneously such as less charging time and improvement in life of the battery. To overcome the conflict between charging speed and rise in temperature an optimal multistage constant current (MSCC) based charging strategy has been investigated under different operating conditions. In addition, the proposed charging profiles have been studied using experimentation.

Publisher

Wiley

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3