Experimental and numerical investigation on the elastic properties of luffa–cenosphere‐reinforced epoxy hybrid composite

Author:

Gurjar Ashish Kumar1,Kulkarni Satyabodh M.1ORCID,Joladarashi Sharnappa1,Doddamani Saleemsab1ORCID

Affiliation:

1. Department of Mechanical Engineering National Institute of Technology Karnataka, Surathkal Karnataka India

Abstract

AbstractEstimating the elastic characteristics of natural fiber‐reinforced polymer composites such as luffa fiber reinforced with epoxy is challenging. The structure of luffa cylindrica is complex, like a three‐dimensional natural fibrous mat, netting‐like structure. The multiscale modeling of such structures is the challenge to be addressed. The prime objective of this work is to determine the specific elastic properties of luffa–cenosphere‐reinforced epoxy (LCE) composite, considering the effect of filler volume fractions. Furthermore, multiscale modeling techniques, such as representative volume elements (RVEs) of finite element techniques with chopped, unidirectional, plain, and twill weaving fiber arrangements, were employed. The longitudinal modulus, transverse modulus, shear modulus, and Poisson's ratio were predicted through these modeling approaches. However, experimental and analytical methodologies, including the rule of mixture and Halpin–Tsai, were considered to validate the finite element analysis results. The elastic characteristics of LCE composite were therefore shown to be enhanced by increasing filler volume fraction. However, the cenosphere's 20% volume fraction has the highest elastic properties as determined by analytical, experimental, and computational models. Analytical and finite element simulation results were compared with the experimental results, and based on the findings, the most suitable (unidirectional, chopped, plain, and twill weaving) RVE was identified for finite element modeling of LCE composite for the evaluation of elastic properties. Results from practical approaches and the RVE twill weaving model showed good agreement, with less than 1% error, compared to the other analytical and finite element methods.Highlights NFCs are gaining ground in polymer composites. Overcoming challenges in modeling of luffa fiber inside epoxy matrix. The study uses multiscale modeling with diverse fiber arrangements. Experimental and analytical methods used to confirm FEA results. Increased cenosphere volume fraction boosts LCE composite properties.

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3