Supporting urban greenspace with microbial symbiosis

Author:

Stewart Justin D.12ORCID,Kiers E. Toby12,Anthony Mark A.3,Kiers A. Haven4

Affiliation:

1. Amsterdam Institute for Life and Environment (A‐LIFE) Section Ecology & Evolution Vrije Universiteit Amsterdam Amsterdam the Netherlands

2. Society for the Protection of Underground Networks (SPUN) Wilmington Delaware USA

3. Swiss Federal Institute for Forest Snow and Landscape Research WSL Birmensdorf Switzerland

4. Department of Human Ecology University of California Davis California USA

Abstract

Societal Impact StatementCities are stressful environments for plants, plagued by heat, pollution, and biodiversity loss. As a result, plant communities tend to suffer in green roofs, parks, and living walls. Finding solutions to help plants grow in stressful environments is a goal of the sustainable city. One solution is to better incorporate plant–microbe symbiosis in green architecture. Symbiotic fungi and bacteria can provide nutrients, water, and help plants to cope with urban stress. The reconceptualization of green infrastructure from a microbial‐focused perspective has the potential to improve plant health, growth, and diversity in cities.SummaryPlant communities in cities help maintain the health and stability of urban ecosystems and inhabitants. Ensuring that greenspace is healthy and productive is a key goal of green infrastructure and landscape architecture (GILA). However, cities are stressful environments for plants. In natural ecosystems, plants live in symbiosis with fungi, bacteria, and other microbes that can help alleviate stress. Microbial communities may also help with stress associated with urban environments. Incorporating mutualistic symbioses into GILA is a sustainable way to enhance urban greenspace. Here, we address key stressors for GILA in cities, including dependency on fertilizers, pathogens, drought, fewer pollinators, pollution, and reduced plant biodiversity. For each of these stressors, we discuss how symbiotic fungi and bacteria can help mitigate these issues, including case‐use scenarios. We conclude with new approaches to deliberately incorporate mutualisms in cities and open dialogues with stakeholders.

Funder

Nederlandse Organisatie voor Wetenschappelijk Onderzoek

Publisher

Wiley

Subject

Horticulture,Plant Science,Ecology, Evolution, Behavior and Systematics,Forestry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3