Genetic monitoring for effective plant conservation: An example using the threatened Saxifraga hirculus L. in Scotland

Author:

Finger Aline1ORCID,Macdonald Iain2,Hollingsworth Peter M.1ORCID

Affiliation:

1. Royal Botanic Garden Edinburgh Edinburgh UK

2. NatureScot Inverness UK

Abstract

Societal Impact StatementMany mountain plants persist in small, isolated patches on the verge of extinction. Observational methods of monitoring these populations, such as recording the number of flowering stems, do not indicate the number of genetically distinct individuals, which is crucial information for conserving small populations. Here, the rate of clonal reproduction and number of genetic individuals were measured in the threatened Saxifraga hirculus in Scotland. These methods showed that population size is a poor proxy for genotype diversity and identified highly diverse small populations that may otherwise have been overlooked. This highlights the necessity of using genetic data to ensure the successful conservation of threatened plants.Summary Habitat fragmentation and loss increase the isolation of plant populations, increasing the occurrence of within population reproduction, and the potential for negative genetic effects, such as inbreeding depression and loss of genetic diversity. We use the European protected Marsh Saxifrage (Saxifraga hirculus) in Scotland as an example for declining perennial plants and the genetic resources they encapsulate. S. hirculus has declined due to agricultural intensification, drainage, industrial afforestation and grazing. The species can spread by seed or vegetatively through the production of rhizomes. Flowering is rare though due to grazing, which limits sexual reproduction and gene flow. An almost complete genetic inventory of Scottish populations was done using 11 microsatellite markers. Furthermore, archived DNA samples were used to document temporal genetic changes. We showed that clonal growth is predominant in some populations and genetic diversity (HS and allelic richness) is relatively high. However, the number of genetically distinct individuals (genets) per population is extremely low (3–34). Archived DNA samples showed that some populations consist of the same few genets with no evidence for turnover. Thus, while clonal growth may have helped the species to persist, there is limited creation of new gene combinations. Our findings highlight that reducing grazing pressure and increasing gene flow will be essential to rescue this species from its evolutionary dead end. We demonstrate the benefits of genetic monitoring for determining census population sizes and thus effective plant management and conservation. This work further sets out a strategy for moving this species towards demographic and genetic sustainability.

Publisher

Wiley

Subject

Horticulture,Plant Science,Ecology, Evolution, Behavior and Systematics,Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3