High throughput screening for rapid and reliable prediction of monovalent antibody binding behavior in flowthrough mode

Author:

Lorek Julius Klemens1ORCID,Karkov Hanne Sophie1,Matthiesen Finn1,Dainiak Maria1ORCID

Affiliation:

1. Purification Technologies, Novo Nordisk A/S Maaloev Denmark

Abstract

AbstractFlowthrough (FT) anion exchange (AEX) chromatography is a widely used polishing step for the purification of monoclonal antibody (mAb) formats. To accelerate downstream process development, high throughput screening (HTS) tools have proven useful. In this study, the binding behavior of six monovalent mAbs (mvAbs) was investigated by HTS in batch binding mode on different AEX and mixed‐mode resins at process‐relevant pH and NaCl concentrations. The HTS entailed the evaluation of mvAb partition coefficients (Kp) and visualization of results in surface‐response models. Interestingly, the HTS data grouped the mvAbs into either a strong‐binding group or a weak‐binding/FT group independent of theoretical Isoelectric point. Mapping the charged and hydrophobic patches by in silico protein surface property analyses revealed that the distribution of patches play a major role in predicting FT behavior. Importantly, the conditions identified by HTS were successfully verified by 1 mL on‐column experiments. Finally, employing the optimal FT conditions (7–9 mS/cm and pH 7.0) at a mini‐pilot scale (CV = 259 mL) resulted in 99% yield and a 21–23‐fold reduction of host cell protein to <100 ppm, depending on the varying host cell protein (HCP) levels in the load. This work opens the possibility of using HTS in FT mode to accelerate downstream process development for mvAb candidates in early research.

Publisher

Wiley

Subject

Applied Microbiology and Biotechnology,Bioengineering,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3