Toward a modeling, optimization, and predictive control framework for fed‐batch metabolic cybergenetics

Author:

Espinel‐Ríos Sebastián1ORCID,Morabito Bruno2,Pohlodek Johannes3,Bettenbrock Katja1,Klamt Steffen1ORCID,Findeisen Rolf3ORCID

Affiliation:

1. Analysis and Redesign of Biological Networks Max Planck Institute for Dynamics of Complex Technical Systems Magdeburg Germany

2. Yokogawa Insilico Biotechnology GmbH Stuttgart Germany

3. Control and Cyber‐Physical Systems Laboratory Technical University of Darmstadt Darmstadt Germany

Abstract

AbstractBiotechnology offers many opportunities for the sustainable manufacturing of valuable products. The toolbox to optimize bioprocesses includes extracellular process elements such as the bioreactor design and mode of operation, medium formulation, culture conditions, feeding rates, and so on. However, these elements are frequently insufficient for achieving optimal process performance or precise product composition. One can use metabolic and genetic engineering methods for optimization at the intracellular level. Nevertheless, those are often of static nature, failing when applied to dynamic processes or if disturbances occur. Furthermore, many bioprocesses are optimized empirically and implemented with little‐to‐no feedback control to counteract disturbances. The concept of cybergenetics has opened new possibilities to optimize bioprocesses by enabling online modulation of the gene expression of metabolism‐relevant proteins via external inputs (e.g., light intensity in optogenetics). Here, we fuse cybergenetics with model‐based optimization and predictive control for optimizing dynamic bioprocesses. To do so, we propose to use dynamic constraint‐based models that integrate the dynamics of metabolic reactions, resource allocation, and inducible gene expression. We formulate a model‐based optimal control problem to find the optimal process inputs. Furthermore, we propose using model predictive control to address uncertainties via online feedback. We focus on fed‐batch processes, where the substrate feeding rate is an additional optimization variable. As a simulation example, we show the optogenetic control of the ATPase enzyme complex for dynamic modulation of enforced ATP wasting to adjust product yield and productivity.

Funder

European Regional Development Fund

Publisher

Wiley

Subject

Applied Microbiology and Biotechnology,Bioengineering,Biotechnology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3