Numerical prediction of the solidification and melting of encapsulated nano‐enhanced phase change materials

Author:

Cofré‐Toledo Jonathan12ORCID,Muñoz‐Cuevas Francisco1,Jofré‐Severino Emilio1,Segura‐Ponce Luis A.3,Vasco Diego A.1ORCID

Affiliation:

1. Departamento de Ingeniería Mecánica, Facultad de Ingeniería Universidad de Santiago de Chile Santiago Chile

2. Sustainable Energy, Machinery and Buildings (SEMB) Research Group, INSPIRES Research Centre Universitat de Lleida Lleida Spain

3. Departamento de Ingeniería en Alimentos Universidad del Bío‐Bío Chillán Chile

Abstract

AbstractThe thermal properties of Octadecane vary due to the addition of copper oxide (CuO) nanoparticles. The synthesis of two nano‐enhanced phase change material (NEPCM) required the implementation of the two‐step method, using Octadecane as the base phase change material and CuO nanoparticles at 2.5 and 5.0 wt%. The experimental characterization determined the specific heat capacity, and thermal conductivity of the NEPCMs solid phase, including phase change enthalpy and temperature. These experimental results were then utilized for computational simulation of the thermal charging (solidification) and discharging (melting) processes of NEPCMs within a spherical enclosure, employing the ANSYS/Fluent software. The incorporation of CuO nanoparticles led to an increase in thermal conductivity while causing a decrease in specific heat capacity, enthalpy, and phase change temperature of Octadecane. The computational results revealed a reduction in the melting period and an improvement in the solidification of both NEPCMs. In terms of melting, the convective heat transfer coefficient increased by approximately 27.4% and 3.2% for the NEPCM at 2.5 and 5.0 wt% CuO, respectively. During the solidification process, the overall heat transfer coefficient experienced a significant increase of 43.8% and 59.8% for the NEPCM at 2.5 and 5.0 wt%, respectively.

Funder

Fondo Nacional de Desarrollo Científico y Tecnológico

Publisher

Wiley

Subject

Renewable Energy, Sustainability and the Environment,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3