Electrochemical capacitance and hydrogen adsorption behavior of activated carbon derived from cattail fiber

Author:

Achayalingam Ramesh12ORCID,Basu Sourabh1ORCID,Rao Prins Kumar1ORCID,Pandey Jyotsana1ORCID,Selvaraj Nivetha2,Selvam Jayachitra2,Hudson M. Sterlin Leo12ORCID

Affiliation:

1. Hydrogen Energy Center, Department of Physics, Institute of Science Banaras Hindu University Varanasi India

2. Department of Physics Central University of Tamil Nadu Thiruvarur India

Abstract

AbstractIn this paper, we have reported the synthesis of activated carbon (AC) from biomass cattail fiber through hydrothermal carbonization, followed by chemical activation, and its electrochemical capacitance and hydrogen storage properties. The AC exhibits a Brunauer‐Emmett‐Teller (BET) surface area (SBET) of 1597.5 m2g−1, determined from the low‐pressure N2 adsorption isotherm at 77 K using a BET‐multipoint plot. The AC sample shows a reversible hydrogen adsorption capacity of 0.25 wt.% H2 (1.25 mmol H2 g−1) at 293 K and 74 atm. The capacitance performance of AC was investigated with various conductive additives such as carbon nanotubes (CNTs), carbon black (CB), and reduced graphene‐oxide (rGO). From galvanostatic charge discharge (GCD) and cyclic voltammetry (CV) measurements, the as‐derived AC with polymer binder exhibits a specific capacitance (Cs) of 245.2 F g−1 at 0.2 A g−1 and 158.1 F g−1 at 5 mV s−1. Among the investigated conductive additives, AC with CNTs in KOH electrolyte exhibit highest Cs of 326 F g−1 at 0.2 A g−1 and 173 F g−1 at 5 mV s−1. Furthermore, the symmetrical two‐electrode device fabricated using AC with CNTs (as a conductive additive) in 1 M aq. Na2SO4 electrolyte shows a Cs of 97.2 F g−1 at 0.1 A g−1. The energy and power densities of the two‐electrode device were observed to be 28 kW kg−1 and 2.64 Wh kg−1, respectively.

Funder

Department of Science and Technology, Ministry of Science and Technology, India

Banaras Hindu University

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3