The involvement of RNA N6‐methyladenosine and histone methylation modification in decidualization and endometriosis‐associated infertility

Author:

Lin Xiang12ORCID,Dai Yongdong12,Gu Weijia1,Zhang Yi1,Zhuo Feng12,Zhao Fanxuan1,Jin Xiaoying12,Li Chao12,Huang Dong12,Tong Xiaomei12ORCID,Zhang Songying12ORCID

Affiliation:

1. Assisted Reproduction Unit Department of Obstetrics and Gynecology Sir Run Shaw Hospital Zhejiang University School of Medicine Hangzhou China

2. Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province Hangzhou China

Abstract

AbstractDefective decidualization of endometrial stromal cells (ESCs) in endometriosis (EM) patients leads to inadequate endometrial receptivity and EM‐associated infertility. Hypoxia is an inevitable pathological process of EM and participates in deficient decidualization of the eutopic secretory endometrium. Enhancer of zeste homology 2 (EZH2) is a methyltransferase which catalyses H3K27Me3, leading to decreased expression levels of target genes. Although EZH2 expression is low under normal decidualization, it is abundantly increased in the eutopic secretory endometrium of EM and is induced by hypoxia. Chromatin immunoprecipitation‐PCR results revealed that decidua marker IGFBP1 is a direct target of EZH2, partially explaining the increased levels of histone methylation modification in defected decidualization of EM. To mechanism controlling this, we examined the effects of hypoxia on EZH2 and decidualization. EZH2 mRNA showed decreased m6A modification and increased expression levels under hypoxia and decidualization combined treatment. Increased EZH2 expression was due to the increased expression of m6A demethylase ALKBH5 and decreased expression of the m6A reader protein YTHDF2. YTHDF2 directly bind to the m6A modification site of EZH2 to promote EZH2 mRNA degradation in ESCs. Moreover, selective Ezh2 depletion in mouse ESCs increased endometrial receptivity and improved mouse fertility by up‐regulating decidua marker IGFBP1 expression. This is the first report showing that YTHDF2 can act as a m6A reader to promote decidualization by decreasing the stability of EZH2 mRNA and further increasing the expression of IGFBP1 in ESCs. Taken together, our findings highlight the critical role of EZH2/H3K27Me3 in decidualization and reveal a novel epigenetic mechanism by which hypoxia can suppress EM decidualization by decreasing the m6A modification of EZH2 mRNA.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Zhejiang Province

China Postdoctoral Science Foundation

National Basic Research Program of China

Department of Health of Zhejiang Province

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3