Affiliation:
1. Faculty of Physics University of Belgrade Belgrade Serbia
2. Department of Theoretical and Condensed Matter Physics (020) VINČA Institute of Nuclear Sciences – National Institute of the Republic of Serbia, University of Belgrade Belgrade Serbia
3. Materials Technology Division ENEA Centro Ricerche Casaccia Roma Italy
Abstract
AbstractEpoxy‐rich carbon‐based composites are well recognized materials in industries owing to their good mechanical properties and thermal stability. Here, dielectric properties of composites based on bisphenol‐A‐epoxy resin loaded with 5, 6, 10, and 15 wt% of graphite flakes (GF) have been studied. The frequency and temperature dependence of the dielectric permittivity, dielectric loss, and ac conductivity have been examined in temperature (−103 to 97°C) and frequency (20 Hz–200 kHz) range. Influence of the filler surface chemistry have been studied for composites loaded with 5 wt% GF obtained: (i) under wet milling, without or with adding Triton‐100x as a surfactant, or (ii) under dry milling in the presence of KOH. The composite made of epoxy loaded with 5 wt% exfoliated expanded graphite flakes (EEG), was also prepared. The surface treatment with KOH notably increased dielectric constant of the composite, keeping low dielectric loss, while treatment with Triton‐100x significantly increased tanδ. The composite loaded with exfoliated expanded graphite shows higher ac conductivity than those obtained with flaky graphite, GF. Possibility to change dielectric properties of the composites without changing the loading content can be used as an approach in tailoring one with desired dielectric properties.
Funder
Ministarstvo Prosvete, Nauke i Tehnološkog Razvoja
Subject
Materials Chemistry,Polymers and Plastics,Surfaces, Coatings and Films,General Chemistry
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献