Water droplet energy harvesting

Author:

Lin Zhiming12ORCID,Yang Zhengbao1ORCID

Affiliation:

1. Department of Mechanical and Aerospace Engineering Hong Kong University of Science and Technology Hong Kong China

2. School of Electronics and Information Engineering Southwest University Chongqing China

Abstract

AbstractHarnessing abundant kinetic water energy in diverse forms of river flows, ocean waves, tidal currents, raindrops, and others, is highly attractive to ease the energy crisis and satisfy the demands of scattered sensor network nodes in the Internet of things. Among them, raindrops, widely and ubiquitously distributed in nature and ambient living life, have been extensively explored and regarded as significant renewable energy carriers. Extensive efforts have been made to investigate droplet‐based electricity nanogenerators in fundamental mechanism, performance, and applications for achieving sustainable energy demands of the rapidly developing society over the past decade. In this review, we introduce the remarkable progress in this field and discuss the fundamental mechanisms of droplet energy harvesting technology for achieving high‐power generation. More significantly, a systematic review of droplet energy harvesting in different two‐phase interfaces, including liquid–solid, liquid–liquid, and liquid–gas interfaces, is provided. Finally, this survey reveals that droplet‐based electricity generators present vast potential in the power supply. At the same time, several development challenges and prospective solutions are discussed to spur future technological advancements.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3