Zero‐sample face retrieval combining large language model and visual base model for IoT

Author:

Lu Jin1ORCID,Chen Meifen2

Affiliation:

1. Guangdong Key Laboratory of Big Data Intelligence for Vocational Education Shenzhen Polytechnic University Shenzhen China

2. College of Digital Creativity and Animation, Shenzhen Polytechnic University Shenzhen China

Abstract

AbstractThis paper presents a novel approach to face retrieval that leverages the capabilities of large language models and visual base models, marking a significant departure from traditional IoT text retrieval methods that depend on extensive data collection and model training. By eliminating the need for text‐image pair data collection and model training, our method not only dramatically reduces the data and computational costs associated with IoT applications but also achieves high accuracy in face retrieval, as demonstrated by a 72% top‐1 accuracy and 93% top‐3 accuracy on the Celeb‐A dataset. This substantial improvement in efficiency and performance has profound implications for the future of IoT systems, potentially revolutionizing face recognition technology by enabling more scalable, cost‐effective, and accurate solutions. The successful application of zero‐sample face retrieval illustrates the transformative impact that advanced AI models can have on real‐world applications and opens new avenues for research and development in the realm of intelligent IoT devices.

Publisher

Wiley

Reference36 articles.

1. ZhouW LiH TianQ.Recent advance in content‐based image retrieval: A literature survey. arXiv preprint arXiv:1706.060642017.

2. Dual Attention Networks for Multimodal Reasoning and Matching

3. AlomMZ TahaTM YakopcicC et al.The history began from alexnet: A comprehensive survey on deep learning approaches. arXiv preprint arXiv:1803.011642018.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3