Experimental validation of two constitutive models for numerical simulation on the extrusion of rubber blends

Author:

Zhang Ying1,Zhang Xuesong1,Yang Minghao1,Li Yongchao1,Yang Qi1ORCID,Gong Jiawei2,Gao Xueqin1ORCID

Affiliation:

1. College of Polymer Science and Engineering Sichuan University Chengdu China

2. Department of Mechanical Engineering Pennsylvania State University Erie Pennsylvania USA

Abstract

AbstractNumerical simulation plays a crucial role in polymer processing. This paper analyzes the extrusion of two rubber blends using the Bird–Carreau viscous model and the Phan‐Thien–Tanner (PTT) viscoelastic model. The study found that wall slip phenomena occurred in both rubber blends when the apparent shear stress exceeded the critical value. Under these conditions, the physical parameters of the two constitutive models, along with the wall slip parameters that describe the degree of rubber sliding, were obtained. This information provided a theoretical basis for the numerical simulation of the extrusion process. The PTT model was found to be superior to the Bird–Carreau rheological model in predicting the rheological behavior of die swell, velocity field, and pressure field distribution in the extrusion process of the two rubber blends.Highlights Based on the numerical simulation analysis of the capillary extrusion process, we designed a more feasible method for fitting the physical parameters of the constitutive equation and parameters of the Navier slip model and established the foundation for the subsequent numerical simulation of extrusion processing. Phan‐Thien–Tanner model is proved to be the best candidate for predicting the extrusion of rubber blends with high Mooney viscosity, including die swell, velocity, and pressure distribution. Demonstrates that wall slip is an important factor in rubber extrusion. Combining simulation results with experimental data improves the accuracy and predictability of the simulation.

Publisher

Wiley

Subject

Materials Chemistry,Polymers and Plastics,General Chemistry,Materials Chemistry,Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3