High‐throughput classification of S. cerevisiae tetrads using deep learning

Author:

Szücs Balint12ORCID,Selvan Raghavendra34ORCID,Lisby Michael12ORCID

Affiliation:

1. Section for Functional Genomics, Department of Biology University of Copenhagen Copenhagen Denmark

2. Center for Chromosome Stability, Department of Cellular and Molecular Medicine University of Copenhagen Copenhagen Denmark

3. Department of Computer Science University of Copenhagen Copenhagen Denmark

4. Department of Neuroscience University of Copenhagen Copenhagen Denmark

Abstract

AbstractMeiotic crossovers play a vital role in proper chromosome segregation and evolution of most sexually reproducing organisms. Meiotic recombination can be visually observed in Saccharomyces cerevisiae tetrads using linked spore‐autonomous fluorescent markers placed at defined intervals within the genome, which allows for analysis of meiotic segregation without the need for tetrad dissection. To automate the analysis, we developed a deep learning‐based image recognition and classification pipeline for high‐throughput tetrad detection and meiotic crossover classification. As a proof of concept, we analyzed a large image data set from wild‐type and selected gene knock‐out mutants to quantify crossover frequency, interference, chromosome missegregation, and gene conversion events. The deep learning‐based method has the potential to accelerate the discovery of new genes involved in meiotic recombination in S. cerevisiae such as the underlying factors controlling crossover frequency and interference.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3