Comprehensive effects of ammonia substitution rate, compression ratio, and ignition timing on knock, NOx emissions and indicated thermal efficiency in a hydrogen fuel engine

Author:

Li Junquan1,Zhao Chengfei1,Tu Zhangjun1,Cheng Shanxu1,Xu Yuanli12

Affiliation:

1. College of Mechanical Engineering Tianjin University of Science & Technology Tianjin China

2. Key Laboratory of Integrated Design and on Line Monitoring of Light Industry and Food Engineering Machinery and Equipment in Tianjin Tianjin China

Abstract

AbstractTo reduce knock and keeping low NOx emissions and high indicated thermal efficiency (ITE) in a hydrogen fuel engine, the comprehensive effects of ammonia substitution rate (ASR), compression ratio (CR), and ignition timing (IT) on its combustion and its NOx emissions were studied numerically. Based on a four‐cylinder gasoline direct injection (GDI) engine, it was modified into an ammonia/hydrogen dual‐fuel (AHDF) spark ignition (SI) engine. The simulation was conducted by GT‐Power software, and simulation data were validated through experiments. 2500 rpm_50% load was selected for the research. ASR, CR and IT vary from 0% to 20%, 10.5 to 8.5, and −24 to 0°CA ATDC, respectively. The findings indicate that increasing ASR decreases the maximum pressure rise rate (MPRR) and the knock index (KI), improving the ITE, but increasing NOx emissions. Based on 20% ASR, CR was optimized. The findings indicate that decreasing CR reduces the MPRR and KI, but increasing NOx emissions and decreasing the ITE. Finally, based on CR of 9, IT was optimized. The findings indicate that delaying IT reduces the MPRR and KI, but also has a certain impact on NOx emissions and ITE. After compromise consideration, the optimal IT in this study was selected as −9°CA ATDC.

Publisher

Wiley

Reference45 articles.

1. Low carbon and zero carbon technology paths and key technologies of ICEs under the background of carbon neutrality;Shuai S;J Automot Saf Energy Conserv,2021

2. Application prospect of ammonia energy as clean energy;Xu YM;Chem Bull,2019

3. Environmental benefits and challenges of fossil fuel replacement with clean energy

4. Hydrogen energy share improvement along with NOx (oxides of nitrogen) emission reduction in a hydrogen dual-fuel compression ignition engine using water injection

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3