Heat stress‐induced oviposition behavioral change correlates with sperm damage in the pine sawyer beetle, Monochamus alternatus

Author:

Li Hui12,Li Shouyin12,Chen Jin12,Tan Yushan12,Ye Jianren12,Hao Dejun12ORCID

Affiliation:

1. Co‐Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University Nanjing China

2. College of Forestry, Nanjing Forestry University Nanjing China

Abstract

AbstractBackgroundGlobal climate change is causing an increase in extreme high temperatures (EHTs), which subject insects to unprecedented stress. Behavior plasticity in response to EHTs, particularly oviposition behavior, is important for the persistence and outbreak of insect populations. Investigating the plasticity of oviposition behavior and its underlying mechanisms has theoretical importance to pest management, but knowledge gaps still remain.ResultsHerein, we characterized the reproductive traits of Monochamus alternatus, a dominant insect vector of the destructive pine wilt disease, including oviposition behavioral patterns, fecundity, offspring fitness and sperm viability, under simulated heatwave conditions in the laboratory. The results showed that (i) EHTs induced a novel oviposition behavior, whereby females deposited multiple eggs into a single groove rather than laying one egg per groove under normal condition; (ii) EHTs exerted stage‐ and sex‐specific effects on fecundity, offspring fitness and sperm viability; and (iii) there was a significant correlation between frequency of the novel oviposition strategy and sperm viability.ConclusionWe hypothesized that this beetle pest has the ability to flexibly shift towards a low‐cost oviposition strategy to counteract the fitness costs caused by heat stress. Taken together, these findings provide a theoretical foundation for personalized pest management strategies in the context of climate change. © 2024 Society of Chemical Industry.

Funder

Natural Science Foundation of Jiangsu Province

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3