Global existence of solutions for a free‐boundary tumor model with angiogenesis and a necrotic core

Author:

Song Huijuan1,Wang Zejia1ORCID,Hu Wentao2

Affiliation:

1. School of Mathematics and Statistics Jiangxi Normal University Nanchang Jiangxi China

2. School of Mathematics and Statistics Xi'an Jiaotong University Xi'an Shaanxi China

Abstract

In this paper, we study a free‐boundary problem modeling the growth of spherically symmetric tumors with angiogenesis and a necrotic core, where the Robin boundary condition is imposed for the nutrient concentration. The existence of a global solution is established by first reducing the free‐boundary problem into an equivalent initial boundary value problem for a nonlinear strongly singular parabolic equation on a fixed domain, then proving that an approximation problem admits a unique solution by the Schauder fixed point theorem combined with the estimates for parabolic equations, and finally taking the limit. Compared with the Dirichlet boundary value condition problem, the Robin condition causes some new difficulties in making rigorous analysis of the model, particularly on the uniqueness of solutions to the approximation problem.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3