Large shifts of niche and range in the golden apple snail (Pomacea canaliculata), an aquatic invasive species

Author:

Yang Rujing1,Cao Runyao1,Gong Xiang1,Feng Jianmeng1

Affiliation:

1. Department of Life Science and Agronomy Dali University Dali China

Abstract

AbstractNiche and range shifts of invasive species are essential in assessing the risk of biological invasions and developing ecological niches and species distribution theories. Studies on invasive aquatic species' niche and range shifts have important implications for conserving aquatic invasive ecosystems. Here we used niche and range dynamic models to explore niche and range shifts of the golden apple snail Pomacea canaliculata, one of the world's most invasive aquatic species. The major factors responsible for P. canaliculata niche shifts in native and invaded regions were minimum temperature of the coldest month and precipitation in the warmest quarter. The niche and range of invasive P. canaliculata snails were not conserved relative to their native counterparts and had a broader niche and larger range, which are consistent with the findings that invasive P. canaliculata snails could survive in colder, hotter, drier, and wetter climates. Given that niche nonconservatism could result in range nonconservatism and small increases in niche breadth could induce large range expansions, niche shifts might provide a more sensitive indicator of invasion risk than range shifts. In contrast to most invasive species that show conservatism of their native niches, we observed high niche lability between the P. canaliculata snails in the native and invaded regions. Our findings indicate that the golden apple snail is a high‐risk invasive aquatic species for its ability to aggressively proliferate through its rapid reproduction rate, fast growth as suggested by previous studies, and also for its highly labile niches and ranges, which facilitates adaptation to the climate of the introduced regions.

Funder

Dali University

Yunnan Provincial Department of Education

Publisher

Wiley

Subject

Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3