Geometric regularity criteria for the Navier–Stokes equations in terms of velocity direction

Author:

Skalak Zdenek1ORCID

Affiliation:

1. Czech Technical University Prague Czech Republic

Abstract

In this paper, we are inspired by a famous result by Constantin and Fefferman who proved that a simple geometrical assumption on the direction of the vorticity leads to the regularity of weak solutions of the 3D Navier–Stokes equations. We show that the same result can be achieved if the vorticity direction is replaced by the velocity direction. We further strengthen this result and prove that in fact it is not necessary to consider the velocity direction in all close space points but only in the points whose distance equals to a small positive number dependant on the data. In the second part of the paper, we extend a result by Berselli and C rdoba concerning the role of the helicity for the regularity of the weak solutions of the Navier–Stokes equations.

Funder

European Regional Development Fund

Publisher

Wiley

Subject

General Engineering,General Mathematics

Reference20 articles.

1. Sur le mouvement d'un liquide visqueux emplissant l'espace

2. The Navier-Stokes Equations

3. Regularity criterion for 3d navier-stokes equations in terms of the direction of the velocity

4. Navier‐Stokes equations: some questions related to the direction of the vorticity;Beirao da Veiga H.;Discret. Contin. Dyn. Syst. Series S,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3