Nonlinear predictor‐feedback cooperative adaptive cruise control of vehicles with nonlinear dynamics and input delay

Author:

Bekiaris‐Liberis Nikolaos1ORCID

Affiliation:

1. Department of Electrical and Computer Engineering Technical University of Crete Chania Greece

Abstract

SummaryWe construct a nonlinear predictor‐feedback cooperative adaptive cruise control (CACC) design for homogeneous vehicular platoons subject to actuators delays, which achieves: (i) positivity of vehicles' speed and spacing states, (ii) string stability of the platoon, (iii) stability of each individual vehicular system, and (iv) regulation to the desired reference speed (dictated by the leading vehicle) and spacing. The design relies on a nominal, nonlinear adaptive cruise control (ACC) law that we construct, which guarantees (i)–(iv) in the absence of actuator delay, and nonlinear predictor feedback. We consider a classical (for ACC/CACC design) third‐order, nonlinear model subject to input delay, for the vehicles' dynamics. The proofs of the theoretical guarantees (i)–(iv) rely on derivation of explicit estimates on solutions (both during open‐loop and closed‐loop operation), capitalizing on the ability of predictor feedback to guarantee complete delay compensation after the dead‐time interval has elapsed, and derivation of explicit conditions on initial conditions and parameters of the nominal control law. We also present consistent simulation results, considering a platoon of ten vehicles, which validate the design developed.

Funder

Hellenic Foundation for Research and Innovation

Publisher

Wiley

Reference38 articles.

1. Predictor-Based Adaptive Cruise Control Design

2. Method of compensation for the mechanical response of connected adaptive cruise control vehicles

3. Dynamics of connected vehicle systems with delayed acceleration feedback

4. Are Commercially Implemented Adaptive Cruise Control Systems String Stable?

5. LiuX GoldsmithA MahalSS HedrickJK.Effects of communication delay on string stability in vehicle platoons. Paper presented at: IEEE Intelligent Transportation Systems Conference Oakland California.2001.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3