Driving mode analysis—How uncertain functional inputs propagate to an output

Author:

Vander Wiel Scott A.1ORCID,Grosskopf Michael J.1,Michaud Isaac J.1,Neudecker Denise2

Affiliation:

1. Statistical Sciences Group Los Alamos National Laboratory Los Alamos New Mexico USA

2. Materials and Physical Data Group Los Alamos National Laboratory Los Alamos New Mexico USA

Abstract

AbstractDriving mode analysis elucidates how correlated features of uncertain functional inputs jointly propagate to produce uncertainty in the output of a computation. Uncertain input functions are decomposed into three terms: the mean functions, a zero‐mean driving mode, and zero‐mean residual. The random driving mode varies along a single direction, having fixed functional shape and random scale. It is uncorrelated with the residual, and under linear error propagation, it produces an output variance equal to that of the full input uncertainty. Finally, the driving mode best represents how input uncertainties propagate to the output because it minimizes expected squared Mahalanobis distance amongst competitors. These characteristics recommend interpretation of the driving mode as the single‐degree‐of‐freedom component of input uncertainty that drives output uncertainty. We derive the functional driving mode, show its superiority to other seemingly sensible definitions, and demonstrate the utility of driving mode analysis in an application. The application is the simulation of neutron transport in criticality experiments. The uncertain input functions are nuclear data that describe how Pu reacts to bombardment by neutrons. Visualization of the driving mode helps scientists understand what aspects of correlated functional uncertainty have effects that either reinforce or cancel one another in propagating to the output of the simulation.

Funder

Los Alamos National Laboratory

National Nuclear Security Administration

U.S. Department of Energy

Publisher

Wiley

Subject

Computer Science Applications,Information Systems,Analysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3