Conventional and modern markers of pregnancy of unknown location: Update and narrative review

Author:

Hou Likang12,Liang Xiaowen13,Zeng Lingqing12,Wang Qian4,Chen Zhiyi13

Affiliation:

1. Institute of Medical Imaging, Hengyang Medical School University of South China Hengyang China

2. The First Affiliated Hospital, Medical Imaging Center, Hengyang Medical School University of South China Hengyang China

3. Key Laboratory of Medical Imaging Precision Theranostics and Radiation Protection, College of Hunan Province, Department of Medical Imaging, the Affiliated Changsha Central Hospital, Hengyang Medical School University of South China Changsha China

4. The First Affiliated Hospital, Center for Reproductive Medicine, Hengyang Medical School University of South China Hengyang China

Abstract

AbstractPregnancy of unknown location (PUL) is a temporary pathologic or physiologic phenomenon of early pregnancy that requires follow up to determine the final pregnancy outcome. Evidence indicated that PUL patients suffer a remarkably higher rate of adverse pregnancy outcomes, represented by ectopic gestation and early pregnancy loss, than the general population. In the past few decades, discussion about PUL has never stopped, and a variety of markers have been widely investigated for the early and accurate evaluation of PUL, including serum biomarkers, ultrasound imaging features, multivariate analysis, and the diagnosis of ectopic pregnancy based on risk stratification. So far, machine learning (ML) methods represented by M4 and M6 logistic regression have gained a level of recognition and are continually improving. Nevertheless, the heterogeneity of PUL markers, mainly caused by the limited sample size, the differences in population and technical maturity, etc., have hampered the management of PUL. With the advancement of multidisciplinary integration and cutting‐edge technologies (e.g. artificial intelligence, prediction model development, and telemedicine), novel markers, and strategies for the management of PUL are expected to be developed. In this review, we summarize both conventional and novel markers (represented by artificial intelligence) for PUL assessment and management, investigate their advancements, limitations and challenges, and propose insights on future research direction and clinical application.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Reference95 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3