Affiliation:
1. Department of Chemistry and Biomolecular Sciences University of Ottawa Ottawa Ontario Canada
2. Vancouver Prostate Centre University of British Columbia Vancouver British Columbia Canada
3. Ottawa Institute of Systems Biology Ottawa Ontario Canada
Abstract
AbstractRecent efforts to synthetically expand drug‐like chemical libraries have led to the emergence of unprecedently large virtual databases. This surge of make‐on‐demand molecular datasets has been received enthusiastically across the drug discovery community as a new paradigm. In several recent studies, virtual screening (VS) of larger make‐on‐demand collections resulted in the identification of novel molecules with higher potency and specificity compared to more conventional VS campaigns relying on smaller in‐stock libraries. These results inspired ultra‐large VS against various clinically relevant targets, including key proteins of the SARS‐CoV‐2 virus. As library sizes rapidly surpassed the billion compounds mark, new computational screening strategies emerged, shifting from conventional docking to fragment‐based and machine learning‐accelerated methods. These approaches significantly reduce computational demands of ultra‐large screenings by lowering the number of molecules explicitly docked onto a target. Such strategies already demonstrated promise in evaluating libraries of tens of billions of molecules at relatively low computational cost. Herein, we review recent advancements in structure‐based methods for ultra‐large virtual screening that drug discovery practitioners have adopted to explore the ever‐expanding chemical universe.This article is categorized under:
Data Science > Databases and Expert Systems
Data Science > Artificial Intelligence/Machine Learning
Molecular and Statistical Mechanics > Molecular Mechanics
Funder
Canadian Institutes of Health Research
Natural Sciences and Engineering Research Council of Canada
Subject
Materials Chemistry,Computational Mathematics,Physical and Theoretical Chemistry,Computer Science Applications,Biochemistry
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献