Investigation, Monitoring, and Simulation of Permafrost on the Qinghai‐Tibet Plateau: A Review

Author:

Zhao Lin1ORCID,Hu Guojie2ORCID,Liu Guangyue2ORCID,Zou Defu2ORCID,Wang Yuanwei1ORCID,Xiao Yao2,Du Erji2,Wang Chong1,Xing Zanpin2,Sun Zhe3,Zhao Yonghua2,Liu Shibo1,Zhang Yuxin1,Wang Lingxiao1,Zhou Huayun2,Zhao Jianting1

Affiliation:

1. School of Geographical Sciences Nanjing University of Information Science & Technology Nanjing China

2. Cryosphere Research Station on Qinghai‐Tibet Plateau, State Key Laboratory of Cryospheric Science, Northwest Institute of Eco‐Environment and Resources Chinese Academy of Sciences Lanzhou China

3. Key Laboratory of Environment Change and Resources Use in Beibu Gulf, Ministry of Education Nanning Normal University Nanning China

Abstract

ABSTRACTThe Qinghai‐Tibet Plateau (QTP) is the largest permafrost region in the world at low and middle latitudes and high elevation. Permafrost is being degraded on the QTP due to global warming, which has a significant effect on regional climate, hydrological, and ecological processes. This paper provides a summary of recent progress in methods used in permafrost research, the permafrost distribution, and basic data relevant to permafrost research on the QTP. The area of permafrost was 1.32 × 106 km2 over the QTP, which accounts for approximately 46% of the QTP. Moreover, simulation studies of the hydrothermal process and permafrost change were reviewed and evaluated the effect of permafrost degradation on hydrological and ecological processes. The results revealed that the effects of permafrost on runoff were closely related to soil temperature, and the effect of permafrost degradation on the carbon cycle requires further study. Finally, current challenges in simulation of permafrost change processes on the QTP were discussed, emphasizing that permafrost degradation under climate change is a slow and non‐linear process. This review will aid future studies examining the mechanism underlying the interaction between permafrost and climate change, and environmental protection in permafrost regions on the QTP.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3