Revisiting reference evapotranspiration calculation under regional advection and its effect on single and dual crop coefficients: An empirical approach for quinoa crop

Author:

Razmavaran Mohammad Hadi1,Sepaskhah Ali Reza12ORCID,Ahmadi Seyed Hamid12

Affiliation:

1. Water Engineering Department, School of Agriculture Shiraz University Shiraz Iran

2. Drought Research Center Shiraz University Shiraz Iran

Abstract

AbstractAdvection is a prevailing meteorological phenomenon in the arid and semi‐arid environments that directly affects the crop and soil hydrology. It could have a great impact on the rate of standard crop evapotranspiration (ETc) in the irrigated areas. Therefore, it is required to take it into consideration while computing crop water requirement through the physically based meteorological procedures. The objectives of this study are (1) simple modification of the Penman–Monteith (PM) equation in calculation of the grass reference evapotranspiration (ETo) to implement the local advection, (2) comparing the single (Kc) and dual crop coefficient (Kcb) of two quinoa cultivars (Titicaca, and Q5) with and without advection correction and (3) presenting a simple model to calculate the advection factor using the maximum air temperature and mean relative humidity for the future crop growth modelling studies. Both Q5 and Titicaca showed unexpectedly very high ETc and potential transpiration (Tp) as 1568 mm and 1003 mm, and 1156 mm and 829 mm, respectively, due to occurrence of regional advection, whereas very high unrealistic Kc and Kcb values for Q5 revealed the impact of strong local advection and external energy. Therefore, we modified ETo to implement the advection effect through introducing the advection factor, ETc/Rn (Rn is the net radiation), as a function of maximum air temperature and mean relative air humidity during the growing season [ETc/Rn = exp (0.025Tmax – 0.015RHavg)] which resulted in higher ETo values, and consequently lower and more realistic Kc and Kcb. As a result, modified maximum Kc values of 1.14 and 1.55 and the modified maximum Kcb of 0.94 and 1.0 were obtained for Titicaca and Q5 cultivars, respectively. This procedure leads to a more accurate site‐specific Kc estimation and indirectly reliable ETc estimation as a function of advection factor and its multiplication by the non‐modified ETo. Furthermore, for direct estimation of ETc through the PM equation, the coefficients of aerodynamic and canopy resistance components of PM equation were modified for estimation of ETc by the non‐modified Rn, which resulted in accurate estimation of ETc.

Funder

National Drought Research Institute, Shiraz University

Iran National Science Foundation

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3