SOH estimation and RUL prediction of lithium batteries based on multidomain feature fusion and CatBoost model

Author:

Zhang Mei1,Yin Jun1ORCID,Chen Wanli1

Affiliation:

1. College of Electrical and Information Engineering Anhui University of Science and Technology Huainan Anhui China

Abstract

AbstractIn this paper, a lithium‐ion battery State of Health (SOH) estimation algorithm is proposed based on the fusion of multidomain features and the application of a CatBoost model. The aim is to address the issue of low prediction accuracy in SOH caused by the utilization of single‐feature extraction techniques. The algorithm encompasses the extraction of various features from the original charge–discharge data, including time‐domain, frequency‐domain, entropy, and time‐series features. Following the evaluation of feature importance, a feature selection process is conducted to eliminate redundant features that provide a limited contribution to the predictive results. Subsequently, a multiple‐set discriminative correlation analysis is employed to integrate high‐dimensional features. To attain accurate predictions, the CatBoost model is further optimized through the utilization of a sparrow search algorithm. Experimental results demonstrate that the proposed algorithm achieves accurate SOH estimations within individual batteries, as evidenced by mean square error values consistently below 4e−4 and goodness‐of‐fit values exceeding or equal to 0.98. Additionally, the algorithm exhibits reliable prediction capabilities across different batteries operating under the same charge/discharge strategy. Comparative analysis indicates that the adoption of the multidomain feature fusion approach yields improved prediction accuracy in contrast to the utilization of a single feature extraction method.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

General Energy,Safety, Risk, Reliability and Quality

Reference40 articles.

1. HaifengD XuezheW ZechangS. A new SOH prediction concept for the power lithium‐ion battery used on HEVs.2009 IEEE Vehicle Power and Propulsion Conference. IEEE.2009:1649‐1653.

2. A method to estimate battery SOH indicators based on vehicle operating data only

3. A Neural-Network-Based Method for RUL Prediction and SOH Monitoring of Lithium-Ion Battery

4. A single particle model with chemical/mechanical degradation physics for lithium ion battery State of Health (SOH) estimation

5. Data‐driven ICA‐Bi‐LSTM‐combined lithium battery SOH estimation;Sun H;Math Prob Eng,2022

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3