Validation of the presence of fast exchanging amineCESTeffect at low saturation powers and its influence on the quantification ofAPT

Author:

Sun Casey12ORCID,Zhao Yu13ORCID,Zu Zhongliang134ORCID

Affiliation:

1. Vanderbilt University Institute of Imaging Science Vanderbilt University Medical Center Nashville Tennessee USA

2. Department of Chemistry University of Florida Gainesville Florida USA

3. Department of Radiology and Radiological Sciences Vanderbilt University Medical Center Nashville Tennessee USA

4. Department of Biomedical Engineering Vanderbilt University Nashville Tennessee USA

Abstract

PurposeAccurately quantifying the amide proton transfer (APT) effect and the underlying exchange parameters is crucial for its applications, but previous studies have reported conflicting results. In these quantifications, the CEST effect from the fast exchange amine was always ignored because it was considered weak with low saturation powers. This paper aims to evaluate the influence of the fast exchange amine CEST on the quantification of APT at low saturation powers.MethodsA quantification method with low and high saturation powers was used to distinguish APT from the fast exchange amine CEST effect. Simulations were conducted to assess the method's capability to separate APT from the fast exchange amine CEST effect. Animal experiments were performed to assess the relative contributions from the fast exchange amine and amide to CEST signals at 3.5 ppm. Three APT quantification methods, each with varying degrees of contamination from the fast exchange amine, were employed to process the animal data to assess the influence of the amine on the quantification of APT effect and the exchange parameters.ResultsThe relative size of the fast exchange amine CEST effect to APT effect gradually increases with increasing saturation power. At 9.4 T, it increases from approximately 20% to 40% of APT effect with a saturation power increase from 0.25 to 1 μT.ConclusionThe fast exchange amine CEST effect leads overestimation of APT effect, fitted amide concentration, and amide–water exchange rate, potentially contributing to the conflicting results reported in previous studies.

Funder

National Institute for Health Research

Publisher

Wiley

Subject

Radiology, Nuclear Medicine and imaging

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3