Density functional theory study of the styrylbenzoquinoline dyad and the related dibenzoquinolylcyclobutane formed in the [2 + 2] photocycloaddition reaction

Author:

Budyka Mikhail F.1ORCID

Affiliation:

1. Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry RAS Moscow Region Russian Federation

Abstract

AbstractThe structure and electronic properties of the biphotochromic dyad with two styrylbenzo[f]quinoline photochromes, as well as the corresponding cyclobutane with two benzo[f]quinoline (BQ) substituents, are studied by DFT at the M06‐2X/6‐31G* level, the cyclobutane being a product of the [2 + 2] photocycloaddition (PCA) reaction of the dyad. According to calculations, the dyad forms π‐stacked folded conformers, which, when excited, can form excimers that are precursors of cyclobutane. TD DFT calculations and natural transition orbital (NTO) analysis indicated that the lowest singlet excited S1 state in the dyad is localized on the SBQ photochrome, including the ethylene group that undergoes PCA. Thus, the conditions for concerted electrocyclic reactions are satisfied, and the direct PCA follows the Woodward–Hoffmann rules. In contrast, in cyclobutane, the S1 state is localized on the BQ substituent rather than on the cyclobutane core. Therefore, the reverse ring‐opening (retro‐PCA) reaction cannot follow the Woodward‐Hoffmann rules and inevitably involves a step of excitation energy transfer from BQ to cyclobutane, which means the predissociation mechanism.

Funder

Russian Science Foundation

Publisher

Wiley

Subject

Physical and Theoretical Chemistry,Condensed Matter Physics,Atomic and Molecular Physics, and Optics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3