The effect of graphene oxide on thermal, electrical, and mechanical properties of carbon/epoxy composites: Towards multifunctional composite material

Author:

Pramodkumar B.1,Budhe Sandip1ORCID

Affiliation:

1. Mechanical Engineering Department National Institute of Technology Calicut Kerala India

Abstract

AbstractThe focus of this research work is to investigate the influence of graphene oxide (GO) on the mechanical, thermal, and electrical properties of carbon fiber‐reinforced polymer (CFRP) composites. The solvent mixing method with the new addition of a mixing stage is introduced for uniform distribution of graphene oxide in polymer. Different weight percentages of graphene oxide (1%, 1.5%, and 2%) were incorporated into the epoxy matrix, and the resulting composites were subjected to electrical conductivity, thermal conductivity, and interlaminar shear strength (ILSS) testing. The findings revealed a positive influence on material properties with the percentage of GO. Especially, the electrical conductivity and ILSS values reached up to 7.05 S/m and 11.03 MPa, respectively, when 1.5% GO by weight of the resin was added. The improvement in ILSS reported by 40% compared to the neat CFRP, and this increment was attributed to enhanced bonding between the epoxy matrix and carbon fabric. Maximum thermal conductivity of 1.04 W/m°K obtained at 1% GO filler, which is 15% higher than neat epoxy composite. Overall, these results illustrate the potential of GO as a promising filler to improve the electrical, thermal, and mechanical properties of CFRP composites. Proper optimization of graphene content in a polymer is needed to achieve the best multifunctional composite materials.Highlights The new solvent mixing method is introduced for uniform distribution of graphene oxide in polymer. Maximum thermal and electrical conductivity obtained at different percentages of graphene content in composite. Positive improvement is observed in mechanical, thermal, and electrical at a specific percentage of graphene in the composite. Proper optimization of nanofiller content in composite is needed to assess for maximum performance.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3