Hybrid Red Deer and Improved Fireworks Optimization Algorithm–based Clustering Protocol for improving network longevity with energy stability in WSNs

Author:

Anupkant Sabnekar12ORCID,Yugandhar Garapati1

Affiliation:

1. Department of Computer Science and Engineering, GITAM School of Technology GITAM, Deemed to be University Hyderabad India

2. Department of Information Technology, CVR College of Engineering JNTUH Hyderabad India

Abstract

SummaryClustering of nodes in wireless sensor networks (WSNs) plays a dominant role in gathering environmental data from the specific area of monitoring over which they are deployed for achieving a reactive decision‐making process. The design and development of an energy‐efficient clustering strategy with a potential cluster head (CH) selection process is a herculean task. This development of the CH selection scheme is referred as a non‐deterministic polynomial (NP) hard problem as it needs to optimize different parameters that influence the selection of potential sensor nodes as CH. It needs to concentrate on the process of enhancing network lifespan with energy efficiency by selecting optimal routing path during data dissemination activity. In this paper, a Hybrid Red Deer and Fireworks Optimization Algorithm (HIRDIFOA)–based energy efficient clustering technique is proposed for extending network lifespan with maximized stability in the network energy. This proposed HRDFOA integrated the exploration capability of Improved Red Deer Optimization (IRDOA) with the maximized exploitation tendency of the Modified Firework Optimization Algorithm (MFWOA) during the CH selection process. It facilitated the CH selection by evaluating the fitness functions that integrate the factors of residual energy (RE), distance between sensor and CH, distance between CH and sink, and radius of communication. It significantly adopted MWFOA for achieving sink node mobility such that data can be reliably routed from CH to sink. The outcomes of HRDFOA confirm better throughput of 19.21% with reduced energy consumption of 17.42% and reduced end‐to‐end delay of 18.52% in contrast to the competitive CH selection schemes used for investigation.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3