A review of carbon and phosphorus ratios in fresh water ecosystems dominated by phytoplankton: Effects of climate and geography

Author:

Ayub Gohar1,Su Jinzhu1,Su Yuping123,Zheng Luwei1,Zhou Yuanyuan1,Rehman Sami ur1,Zahir Muhammad1

Affiliation:

1. College of Environmental Science and Engineering Fujian Normal University Fuzhou China

2. Fujian Key Laboratory of Special Marine Bio‐resources Sustainable Utilization Fujian Normal University Fuzhou China

3. Research Center of River and Lake Health in Fujian Province Fuzhou China

Abstract

AbstractIn freshwater systems, carbon, nitrogen, and phosphorus are essential macroelements. Changing ecological communities as a result of anthropogenic activity and climate change has become a global issue. C:P has been demonstrated to be a trustworthy and sensitive assay for detecting and monitoring single or multiple species in a wide range of samples. We look at how C:P can be utilized to manage and reduce eutrophication and harmful algal blooms (HABs) in freshwater environments in this review work. Recent research show how C:P has been shown to be a useful strategy for gathering complete data in freshwater ecosystem studies. The total number of papers in ScienceDirect from 2000 to 2023 with the terms “carbon and phosphorus ratios, fresh water ecosystems, and phytoplankton” in the title, abstract, or keywords was acquired for this review. Based on the number of published research demonstrating an increased understanding of the basic scientific concepts behind the carbon and phosphorus ratio, the overall temporal trend in publications on the ratio showed a steady growth. Compared to eutrophic Lake Victoria, which had a C:P of 149, mesotrophic Lakes Malawi and Kivu had a ratio of 263. Applying the carbon‐to‐phosphorus ratio to lake and reservoir eutrophication assessment is feasible, and the increasing C:P ratio serves as a prime indicator for the initiation of lake and reservoir reoligotrophication. Our findings establish the framework for future study into the relationship between organic nutrients and eutrophication, as well as the ecological ramifications of these relationships in freshwater systems. Furthermore, our prediction was that increases in C:P would change the structure of phytoplankton communities.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3