Forecasting system's accuracy: A framework for the comparison of different structures

Author:

Silveira Netto Carla Freitas1ORCID,Brei Vinicius A.23,Hyndman Rob J.4

Affiliation:

1. Department of Management University of Bologna Bologna Italy

2. Media Lab Massachusetts Institute of Technology (MIT) Cambridge Massachusetts USA

3. School of Management Federal University of Rio Grande do Sul (UFRGS) Porto Alegre Brazil

4. Department of Econometrics & Business Statistics Monash University Clayton Victoria Australia

Abstract

AbstractOne of the most challenging aspects for managers when building a forecasting system is choosing how to aggregate the data at different levels. This is frequently done without the manager knowing how these choices can compromise the system's accuracy. This article illustrates these compromises by comparing different structures and aggregation criteria. Our article proposes and empirically tests a framework on how to build a coherent and more accurate forecasting system. The framework's first phase compares different time series forecasting methods, including statistical, “standard” machine learning, and deep learning. Results show that one of the statistical methods (autoregressive integrated moving average, or, for short, ARIMA) outperforms machine and deep learning methods. The second phase compares different combinations of aggregation criteria, structures of the forecasting system, and coherent forecast methods (i.e., adjustments to the forecasts at different levels of aggregation). The results show that using different criteria and structures indeed impacts predictions' accuracy. When it is necessary to disaggregate the forecast, our results show that it is best to add more information in a grouped structure, adjusted by a bottom‐up method. This combination provides the best performance, that is, the lowest mean absolute‐scaled error (MASE) in most nodes, compared to the other structures and coherent forecast methods used. The results also suggest that aggregating the time series further by geographical regions is essential to improve accuracy when forecasting products' and channels' sales.

Funder

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Publisher

Wiley

Subject

Management Science and Operations Research,General Business, Management and Accounting,Modeling and Simulation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3