Misspecification analysis of gamma‐ and inverse Gaussian‐based perturbed degradation processes

Author:

Esposito Nicola1ORCID,Mele Agostino23ORCID,Castanier Bruno4ORCID,Giorgio Massimiliano1ORCID

Affiliation:

1. Università di Napoli Federico II Napoli Italy

2. Dipartimento di Ingegneria Università degli studi della Campania “Luigi Vanvitelli” Aversa Italy

3. Kineton Napoli Italy

4. Laris Polytech Angers/Université d'Angers Angers France

Abstract

AbstractAlbeit not equivalent, in many applications the gamma and the inverse Gaussian processes are treated as if they were. This circumstance makes the misspecification problem of these models interesting and important, especially when data are affected by measurement errors, since noisy/perturbed data do not allow to verify whether the selected model is actually able to adequately fit the real (hidden) degradation process. Motivated by the above considerations, in this paper we conduct a large Monte Carlo study to evaluate whether and how the presence of measurement errors affects this misspecification issue. The study is performed considering as reference models a perturbed gamma process recently proposed in the literature and a new perturbed inverse Gaussian process that share the same non‐Gaussian distributed error term. As an alternative option, we also analyze the more classical case where the error term is Gaussian distributed. We consider both the situation where the true model is the perturbed gamma and the one where it is the perturbed inverse Gaussian. Model parameters are estimated from perturbed data using the maximum likelihood method. Estimates are retrieved by using a new sequential Monte Carlo EM algorithm, which use allows to hugely mitigate the severe numerical issues posed by the direct maximization of the likelihood. The risk of incurring in a misspecification is evaluated as percentage of times the Akaike information criterion leads to select the wrong model. The severity of a misspecification is evaluated in terms of its impact on maximum likelihood estimate of the mean remaining useful life.

Publisher

Wiley

Subject

Management Science and Operations Research,General Business, Management and Accounting,Modeling and Simulation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3