Water generation through desiccant using novel‐designed solar still coupled with heat pipe vacuum tube collector: An experimental observation

Author:

Srivastava Rahul12ORCID,M. Chandrashekara1,Yadav Avadhesh3

Affiliation:

1. Department of Mechanical Engineering National Institute of Technology Kurukshetra Haryana India

2. Engineering College Bharatpur Bharatpur Rajasthan India

3. National Institute of Solar Energy Gurugram Haryana India

Abstract

AbstractIn this article, an experiment has been carried out with heat pipe vacuum or evacuated tube collector to produce water from atmospheric air. In this experiment, the regeneration and adsorption method has been adopted, that is, water has been produced through the adsorption and regeneration of desiccants. The desiccant is heated through a hot surface to facilitate its regeneration. Limited experiments have been conducted to obtain water through the regeneration of desiccant using a hot surface. For the condensation of water vapor, a novel box has been designed, named the “novel‐designed acrylic box.” The water is collected in a measuring flask or beaker to determine its quantity. Silica gel desiccant has been used for the adsorption and regeneration of water vapors. In this experiment, the adsorption process for silica gel was carried out in two different ways. In the first method, 1 kg of silica gel was scattered on the copper tray, that is, inside the system, while in the second method, 1 kg of silica gel was scattered on the paper, that is, outside of the system. In the first case silica gel adsorbed 137 g water vapor, and in the second case, it adsorbed 232 g water vapor. In the first case of adsorption, 70 mL water was produced while in the second case of adsorption, 175 mL water was produced from ambient air. The system's maximum efficiency was found to be 4.9%. Effects of various parameters, such as solar intensity, ambient temperature, wind speed, and so forth, have been studied.

Publisher

Wiley

Subject

Fluid Flow and Transfer Processes,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3