Oxide‐based ternary composite solid‐state electrolyte for next‐generation lithium batteries

Author:

Ahmad Haseeb1,Haseeb Hafiz Muhammad1,Shabbir Altamash1,Khan Zuhair S.1,Noor Tayyaba2ORCID,Ali Ghulam1ORCID

Affiliation:

1. U.S.‐Pakistan Center for Advanced Studies in Energy National University of Sciences and Technology (NUST) Islamabad Pakistan

2. School of Chemical & Materials Engineering (SCME) National University of Sciences and Technology (NUST) Islamabad Pakistan

Abstract

AbstractOxide‐based solid electrolytes are gaining popularity among researchers owing to their great structural stability. In this work, a novel oxide‐based ternary composite (AlPO4‐SiO2‐Li4P2O7) electrolyte is synthesized via a conventional solid‐state process with excellent water stability and high ionic conductivity. The crystallographic structure of ternary composite is confirmed using x‐ray diffraction and has a significant effect on ionic conductivity. The thermogravimetric analysis result shows a 22.26 wt% loss in the region of 25°C to 900°C due to the evaporation of volatile constituents, including nitrates, carbonates, and moisture. Surface analysis results revealed compact morphology and low porosity with arbitrary grain sizes. Electrochemical impedance spectroscopy has been used to evaluate ionic conductivities. The Mn‐ternary composite sintered at 900°C has shown ionic conductivity of 1.63 × 10−6 S/cm at ambient temperature. 8 wt%‐LiBr enhanced the ionic conductivity up to 1.68 × 10−4 S/cm by significantly reducing the grain boundaries without high‐temperature sintering. Results suggested the suitability of LiBr mixed ternary composites as a favorite candidate for lithium batteries in terms of safety, stability, and high ionic conductivity.

Funder

Higher Education Commission, Pakistan

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3