Effects of Nitrate and Conductivity on Embryo‐Larval Fathead Minnows

Author:

Edwards Thea M.1ORCID,Lamm Daniel J.12ORCID,Harvey Joel J.1

Affiliation:

1. Columbia Environmental Research Center US Geological Survey Columbia Missouri USA

2. Department of Biochemistry, Molecular, and Cell Biology Cornell University Ithaca New York USA

Abstract

AbstractNitrate concentrations have been rising in surface waters over the last century and now frequently exceed drinking water standards and environmental safety benchmarks globally. Health‐wise, these trends are concerning because nitrate has been shown to disrupt endocrine function and developmental outcomes. The present study investigated potential sublethal effects of nitrate on developing fathead minnows. Fish were exposed from fertilization through 21 days postfertilization (dpf) to environmentally relevant concentrations of nitrate (0, 2, 5, 10, 25, or 100 mg/L NO3‐N as NaNO3). Nitrate effects on hatch timing, heart rate and rhythm at 3 dpf, growth through 21 dpf, swim bladder inflation timing and size, scoliosis, pericardial edema, and mortality were assessed. Because adding NaNO3 increases water conductivity, two conductivity controls were included to match the ionic strength of the 10‐ and 100‐mg/L NO3‐N treatments. Increasing nitrate delayed posterior swim bladder (PSB) inflation in a dose‐dependent manner, with possible inhibition of anterior swim bladder (ASB) inflation at higher doses, although nitrate did not affect swim bladder size. Conversely, nitrate did not affect hatch timing or cardiac endpoints at 3 dpf or induce pericardial edema or scoliosis, although there was a noted brood effect on these latter defects. As was observed with increasing nitrate, higher ion concentrations in the conductivity controls caused dose‐dependent increases in fish body size at 21 dpf. Increased ionic strength also hastened ASB inflation independently of nitrate. As in other published studies, the observed delay in PSB inflation suggests that nitrate disrupts the thyroid axis and warrants further investigation. In addition, the present study supports the need for conductivity controls in nitrate toxicity studies to distinguish nitrate‐specific effects. Environ Toxicol Chem 2023;42:1529–1541. Published 2023. This article is a U.S. Government work and is in the public domain in the USA.

Funder

U.S. Geological Survey

Publisher

Wiley

Subject

Health, Toxicology and Mutagenesis,Environmental Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3