Synthesis of palladium nanoparticles utilizing biotemplates and investigation of their synergistic catalytic performance

Author:

Xie Wei1ORCID,Chen Miaomiao2,Wu Chao3ORCID

Affiliation:

1. School of Materials Engineering, Wuhu Institute of Technology Wuhu China

2. State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics School of Public Health, Xiamen University Xiamen China

3. Anhui Province Key Laboratory of Wetland Ecosystem Protection and Restoration Anhui University Hefei China

Abstract

AbstractBACKGROUNDPalladium nanoparticles can act as a shuttle to accelerate the extracellular electron transfer (EET) by exoelectrogens. Through the EET process, microorganisms drive the redox cycle of many substances. The palladium nanoparticle has a variety of catalytic activities and activities can be significantly improved by combining with the active effects of microorganisms.RESULTSIn this study, Staphylococcus saprophyticus JJ‐1 was utilized as a biological template carrier to synthesize palladium nanoparticles that were immobilized on the bacterial surface. The morphology and composition of palladium were characterized by various techniques including transmission electron microscopy, energy‐dispersive X‐ray spectroscopy, X‐ray diffraction, X‐ray photoelectron spectroscopy, and Fourier transform infrared spectroscopy. Furthermore, the hydrogenation activity of the synthesized Pd was tested at room temperature and atmospheric pressure using methyl orange as a model pollutant. Electrochemical characterization was carried out by cyclic voltammetry and potentiostatic measurements. The research demonstrated that palladium nanoparticles acted as both electronic mediators and catalysts in the dye reduction process, while S. saprophyticus JJ‐1 contributed to stabilizing nanoparticles and electrochemical activity. The synergistic effect between these two components significantly enhances MO degradation efficiency.CONCLUSIONThis study presented an energy‐saving method to synthesize an integrated catalyst based on the synergistic interaction between biomass and nanoparticles, offering a novel approach for developing environmentally friendly, cost‐effective, and efficient integrated catalysts. © 2024 Society of Chemical Industry (SCI).

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3