Affiliation:
1. Micro‐Pollutant Research Centre (MPRC), Faculty of Civil Engineering and Built Environment Universiti Tun Hussein Onn Malaysia (UTHM) Batu Pahat Johor Malaysia
2. Department of Food Science and Nutrition, Faculty of Agriculture, Food, and Environment Sana'a University Sana'a Yemen
3. Department of Microbiology, Faculty of Science Sana'a University Sana'a Yemen
4. Global Centre for Environmental Remediation (GCER) University of Newcastle and CRC for Contamination Assessment and Remediation of the Environment (CRC CARE) Newcastle New South Wales Australia
Abstract
AbstractArtemisia abyssinica and Artemisia arborescens are unique plants that show significant bioactive properties and are used for the treatment of a variety of diseases. This study assessed the nutritional values, functional properties, chemical composition, and bioactive attributes of these plants as functional nutritional supplements. Compared to A. arborescens, A. abyssinica had higher fat (4.76%), fiber (16.07%), total carbohydrates (55.87%), and energy (302.15 kcal/100 g DW), along with superior functional properties, including higher water and oil absorption capacities (638.81% and 425.85%, respectively) and foaming capacity and stability (25.67% and 58.48%). The investigation of volatile compounds found that A. abyssinica had higher amounts of hotrienol (4.53%), yomogi alcohol (3.92%), caryophyllene (3.67%), and carvotanacetone (3.64%), which possess anti‐inflammatory, antimicrobial, and antioxidant properties. Artemisia abyssinica contributed over 30% of the recommended dietary intake (RDI) of amino acids. It displayed superior levels of sodium (31.46 mg/100 g DW) and calcium (238.07 mg/100 g DW). It also exhibited higher levels of organic acids, particularly malic acid, butyric acid, and succinic acid, compared to A. arborescens. Fatty acid analysis revealed palmitic and linoleic acids as primary components in both plants, with A. abyssinica having a higher palmitic acid content. Artemisia abyssinica also had higher vitamin C and thiamine levels. Although A. arborescens showed the highest total phenolic content (TPC), antioxidant activity, and capacity, A. abyssinica demonstrated acceptable efficiency in TPC and antioxidant content. These findings highlight the potential of both Artemisia species, particularly A. abyssinica, as valuable sources of nutrients and bioactive compounds for various applications.