Detection of algal tiny objects based on morphological features

Author:

Yuan Shuai1ORCID,Peng Ningkang1,Shi Ziyan1,Zhao Sichuan2,Li Runcheng3,Gu Yanhui1,He Huan2

Affiliation:

1. School of Computer and Electronic Information Nanjing Normal University Nanjing China

2. School of Environment Nanjing Normal University Nanjing China

3. School of Life Sciences Nanjing University Nanjing China

Abstract

SummaryThe dense and toxic blooms formed by cyanobacteria in aquatic environments pose significant threats to public health and aquatic ecosystems. Timely monitoring and prevention of cyanobacterial blooms in freshwater bodies are thus imperative. Although object detection methods have been applied in the field of algae identification, existing research faces several challenges. A primary issue is the overly idealistic setting of training sets, which are disconnected from the actual water quality environments, impeding practical algae identification and water quality monitoring. In this paper, we collect 2024 microscopic images of algae from a reservoir in Southern China, forming a comprehensive and diverse dataset for object detection. Addressing the aforementioned challenges, we propose an attention‐based strategy for the detection of tiny algal objects, which effectively samples and extracts features from algal targets. Our model uniquely leverages the morphable characteristics of algae, enhancing the accuracy and efficiency of identification. The training and improvement results of this model presented in our study are expected to aid in establishing a future system for real‐time algae monitoring and water quality assessment.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3