Spatial–temporal patterns of brain disconnectome in Alzheimer's disease

Author:

Liang Li1ORCID,Zhou Pengzheng2,Ye Chenfei3,Yang Qi4,Ma Ting1235ORCID

Affiliation:

1. Department of Electronic & Information Engineering Harbin Institute of Technology (Shenzhen) Shenzhen China

2. Peng Cheng Laboratory Shenzhen Guangdong China

3. International Research Institute for Artificial Intelligence Harbin Institute of Technology (Shenzhen) Shenzhen China

4. Department of Radiology, Beijing Chao‐Yang Hospital Capital Medical University Beijing China

5. Guangdong Provincial Key Laboratory of Aerospace Communication and Networking Technology Harbin Institute of Technology (Shenzhen) Shenzhen China

Abstract

AbstractMounting evidences have shown that progression of white matter hyperintensities (WMHs) with vascular origin might cause cognitive dysfunction symptoms through their effects on brain networks. However, the vulnerability of specific neural connection related to WMHs in Alzheimer's disease (AD) still remains unclear. In this study, we established an atlas‐guided computational framework based on brain disconnectome to assess the spatial–temporal patterns of WMH‐related structural disconnectivity within a longitudinal investigation. Alzheimer's Disease Neuroimaging Initiative (ADNI) database was adopted with 91, 90 and 44 subjects including in cognitive normal aging, stable and progressive mild cognitive impairment (MCI), respectively. The parcel‐wise disconnectome was computed by indirect mapping of individual WMHs onto population‐averaged tractography atlas. By performing chi‐square test, we discovered a spatial–temporal pattern of brain disconnectome along AD evolution. When applied such pattern as predictor, our models achieved highest mean accuracy of 0.82, mean sensitivity of 0.86, mean specificity of 0.82 and mean area under the receiver operating characteristic curve (AUC) of 0.91 for predicting conversion from MCI to dementia, which outperformed methods utilizing lesion volume as predictors. Our analysis suggests that brain WMH‐related structural disconnectome contributes to AD evolution mainly through attacking connections between: (1) parahippocampal gyrus and superior frontal gyrus, orbital gyrus, and lateral occipital cortex; and (2) hippocampus and cingulate gyrus, which are also vulnerable to Aβ and tau confirmed by other researches. All the results further indicate that a synergistic relationship exists between multiple contributors of AD as they attack similar brain connectivity at the prodromal stage of disease.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Neurology (clinical),Neurology,Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology,Anatomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3