Multi‐input enhanced model reference adaptive control strategies and their application to space robotic manipulators

Author:

Montanaro Umberto1ORCID,Martini Simone12,Hao Zhou3,Gao Yang4,Sorniotti Aldo1

Affiliation:

1. School of Mechanical Engineering Sciences University of Surrey Guildford UK

2. D. F. Ritchie School of Engineering and Computer Science University of Denver Denver Colorado USA

3. Centre for Vision Speech and Signal Processing, Department of Electrical and Electronic Engineering University of Surrey Guildford UK

4. STAR Lab, School of Mechanical Engineering Sciences University of Surrey Guildford UK

Abstract

AbstractThe Enhanced Model Reference Adaptive Control (EMRAC) algorithm, augmenting the MRAC strategy with adaptive integral and adaptive switching control actions, is an effective solution to impose reference dynamics to plants affected by parameter uncertainties, unmodeled dynamics and disturbances. However, the design of the EMRAC solutions has so far been limited to single‐input systems. To cover the gap, this paper presents two extensions of EMRAC to multi‐input systems. The adaptive mechanism of both solutions includes the ‐modification strategy to assure the boundedness of the adaptive gains also in presence of persistent disturbances. The closed‐loop system is analytically studied, and conditions for the asymptotic convergence of the tracking error are presented. Furthermore, when the plant is subjected to unmatched disturbances, the ultimate boundedness of the closed‐loop dynamics, which are made discontinuous by the adaptive switching control actions, is systematically proven by using Lyapunov theory for Filippov systems. The problem of trajectory tracking for space robotic arms in presence of unknown and noncooperative targets is used to test the effectiveness of the novel multi‐input EMRAC algorithms for taming uncertain systems. Four EMRAC solutions are designed for this engineering application, and tested within a high fidelity simulation framework based on the Robot Operating System. Finally, the tracking performance of the EMRAC implementations is quantitatively evaluated via a set of key performance indicators in the joint space and operational space, and compared with that of four benchmarking controllers.

Publisher

Wiley

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Mechanical Engineering,Aerospace Engineering,Biomedical Engineering,General Chemical Engineering,Control and Systems Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3