Physiological and molecular responses of different rose (Rosa hybrida L.) cultivars to elevated ozone levels

Author:

Wang Hua123,Li Maofu123ORCID,Yang Yuan124,Sun Pei123,Zhou Shuting123,Kang Yanhui123,Xu Yansen5,Yuan Xiangyang5,Feng Zhaozhong5,Jin Wanmei123ORCID

Affiliation:

1. Institute of Forestry and Pomology Beijing Academy of Agriculture and Forestry Sciences Beijing China

2. Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China) Ministry of Agriculture and Rural Affairs Beijing China

3. Beijing Engineering Research Center of Functional Floriculture Beijing China

4. Beijing Engineering Research Center for Deciduous Fruit Trees Beijing China

5. School of Applied Meteorology Nanjing University of Information Science & Technology Nanjing China

Abstract

AbstractThe increasing ground‐level ozone (O3) pollution resulting from rapid global urbanization and industrialization has negative effects on many plants. Nonetheless, many gaps remain in our knowledge of how ornamental plants respond to O3. Rose (Rosa hybrida L.) is a commercially important ornamental plant worldwide. In this study, we exposed four rose cultivars (“Schloss Mannheim,” “Iceberg,” “Lüye,” and “Spectra”) to either unfiltered ambient air (NF), unfiltered ambient air plus 40 ppb O3 (NF40), or unfiltered ambient air plus 80 ppb O3 (NF80). Only the cultivar “Schloss Mannheim” showed significant O3‐related effects, including foliar injury, reduced chlorophyll content, reduced net photosynthetic rate, reduced stomatal conductance, and reduced stomatal apertures. In “Schloss Mannheim,” several transcription factor genes—HSF, WRKY, and MYB genes—were upregulated by O3 exposure, and their expression was correlated with that of NCED1, PP2Cs, PYR/PYL, and UGTs, which are related to ABA biosynthesis and signaling. These results suggest that HSF, WRKY, and MYB transcription factors and ABA are important components of the plant response to O3 stress, suggesting a possible strategy for cultivating O3‐tolerant rose varieties.

Funder

National Outstanding Youth Science Fund Project of National Natural Science Foundation of China

Publisher

Wiley

Subject

Plant Science,Biochemistry, Genetics and Molecular Biology (miscellaneous),Ecology,Ecology, Evolution, Behavior and Systematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3