Requirement Discovery Using Embedded Knowledge Graph with ChatGPT

Author:

VanGundy Braxton1,Phojanamongkolkij Nipa2,Brown Barclay3,Polavarapu Ramana4,Bonner Joshua4

Affiliation:

1. NASA Langley Research Center Mail Stop 061

2. NASA Langley Research Center Mail Stop 290

3. Collins Aerospace 400 Collins Rd NE Cedar Rapids IA 52498 USA

4. NASA Langley Research Center Mail Stop 050

Abstract

AbstractThe field of Advanced Air Mobility (AAM) is witnessing a transformation with innovations such as electric aircraft and increasingly automated airspace operations. Within AAM, the Urban Air Mobility (UAM) concept focuses on providing air‐taxi services in densely populated urban areas. This research introduces the utilization of Large Language Models (LLMs), such as OpenAI's GPT‐4, to enhance the UAM Requirement discovery process.This study explores two distinct approaches to leverage LLMs in the context of UAM Requirement discovery. The first approach evaluates the LLM's ability to provide responses without relying on additional outside systems, such as a relational or graph database. Instead, a vector store provides relevant information to the LLM based on the user's question, a process known as Retrieval Augmented Generation (RAG). The second approach integrates the LLM with a graph database. The LLM acts as an intermediary between the user and the graph database, translating user questions into cypher queries for the database and database responses into human‐readable answers for the user. Our team implemented and tested both solutions to analyze requirements within a UAM dataset. This paper will talk about our approaches, implementations, and findings related to both approaches.

Publisher

Wiley

Reference7 articles.

1. Andriopoulos K. &Pouwelse J.(2023).Augmenting LLMs with Knowledge: A survey on hallucination prevention. arXiv preprint arXiv:2309.16459.

2. Komeili M. Shuster K. &Weston J.(2021).Internet-augmented dialogue generation. arXiv preprint arXiv:2107.07566.

3. Levitt I. Phojanamongkolkij N. Horn A. &Witzberger K.(2023).UAM Airspace Research Roadmap-Rev. 2.0.

4. Phojanamongkolkij N. Levitt I. M. &Barnes P. D.Overview of Model-Based Systems Engineering Efforts to Evolve the Airspace Research Roadmap. In AIAA AVIATION2022.

5. Singhal A.(2012 May 16).Introducing the Knowledge Graph: things not strings. Google.https://blog.google/products/search/introducing-knowledge-graph-things-not/

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3