Integrating AI with MBSE for Data Extraction from Medical Standards

Author:

Ghanawi Ibrahim1,Chami Mohammad Wissam1,Chami Mohammad1,Coric Marko2,Abdoun Nabil1

Affiliation:

1. SysDICE GmbH Franz‐Volhard‐Str. 5 68167 Mannheim Germany

2. Mechatronic GmbH Europaplatz 5 64293 Darmstadt Germany

Abstract

AbstractThe growing adoption of Model‐Based Systems Engineering (MBSE) in the medical sector has prompted a significant emphasis on the digitization of medical standards into norm models. This transformation promotes consistency and allows for tracing system model elements to the corresponding norm model elements. Despite these efforts, the current digitization activities heavily rely on manual extraction and transformation, particularly from PDF documents into SysML models. Concurrently, the proliferation of Artificial Intelligence (AI) applications in recent years presents an opportunity to automate such activities. This paper contributes to the integration of AI with MBSE, focusing solely on the extraction and transformation of medical standards information from documents into SysML norm models. It explores the initial outcomes of augmenting data extraction from medical standards using recent AI algorithms and integrating them into MBSE practices. The evaluation involves two approaches, an open‐source multimodal classifier model and a proprietary large language model. The study assesses these approaches on a medical standard and outlines future work, including the exploration of an open‐source large language model approach.

Publisher

Wiley

Reference35 articles.

1. AakankshaChowdhery SharanNarang JacobDevlin MaartenBosma GauravMishra AdamRoberts …NoahFiedel. (2022). PaLM: Scaling Language Modeling with Pathways.Journal of Machine Learning Research.

2. Abdoun N. &Chami M.(2022).Automatic Text Classification of PDF Documents using NLP Techniques. 32nd Annual INCOSE International Symposium 25–30 June 2022 — Detroit MI.https://doi.org/10.1002/iis2.12997

3. AshishVaswani NoamShazeer NikiParmar JakobUszkoreit LlionJones Aidan N.Gomez LukaszKaiser IlliaPolosukhin(2017). Attention is All you Need.NIPS.

4. Bast H. &Korzen C.(2017). A benchmark and evaluation for text extraction from PDF.ACM/IEEE Joint Conference on Digital Libraries 99–108.https://doi.org/10.1109/jcdl.2017.7991564

5. Brown T. B. Mann B. Ryder N. NickRyder Subbiah M. Kaplan J. …Amodei D.(2020). Language Models are Few-Shot Learners.Neural Information Processing Systems.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3